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bstract

Mathematical modeling has been extensively applied to the study and development of fuel cells. In this laboratory, modeling studies of gas
iffusion electrodes and proton exchange membrane biochemical fuel cells are being developed. Regarding the modeling of usual physical systems,
he available knowledge makes it possible to develop mechanistic models. For biochemical fuel cells, on the other hand, semi-empirical and empirical

odels can be used. In this work, there are three objectives: characterize a phenomenological model for a Pt–air cathode and perform appropriate
imulations; characterize a semi-empirical model to predict the performance of a Pt–H2/H2O2-peroxidase fuel cell; investigate the effectiveness of
empirical) neural networks to predict the performance of a Pt–H2/O2-peroxidase fuel cell. The mechanistic model of a Pt–air cathode developed
ere is based on proper material balances, on Fick’s law of diffusion and on Tafel kinetics. It can provide details of the physical system (such as the

imit of the one-phase regime). A semi-empirical model based on Michaelis–Menten kinetics, in turn, can predict the performance of a Pt–H2/H2O2-
eroxidase biochemical fuel cell. Artificial neural networks were capable of fitting the potential/current relationship of a Pt–H2/O2-peroxidase
iochemical fuel cell.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Mathematical modeling has been extensively applied to the
tudy and development of fuel cells. Sousa and Gonzalez [1]
eviewed the state-of-the-art regarding modeling of fuel cells
ith a polymer electrolyte membrane.
The optimal modeling approach differs for each applica-

ion [1,2]. Empirical models, specific for each application and
et of operating conditions, are useful tools to predict the cell
erformance. Mechanistic models, in turn, besides their pre-
ictive capability, also can provide a detailed description of
he cell and its components. A mechanistic fuel cell model is
ased on transport phenomena and electrochemical relation-

hips.

In this laboratory, modeling studies of gas diffusion elec-
rodes and proton exchange membrane biochemical fuel cells
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re being developed. Regarding the modeling of usual physical
ystems, the available knowledge makes it possible to develop
echanistic models. For biochemical fuel cells, on the other

and, to which less phenomenological knowledge is available,
mpirical (and semi-empirical) models can be used. This work
as three objectives: characterize a phenomenological model for
Pt–air cathode and perform appropriate simulations; charac-

erize a semi-empirical model to predict the performance of a
t–H2/H2O2-peroxidase fuel cell; investigate the effectiveness
f (empirical) neural networks to predict the performance of a
t–H2/O2-peroxidase fuel cell.

. Background

.1. Computational fluid dynamics
Over the past decade or so, computational fluid dynam-
cs (CFD) techniques have been used extensively to model
uel cells. CFD is based on the solution of phenomenolog-
cal conservation equations (mass, momentum, species, . . .
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Nomenclature

A constant (mM)
Ai areas of control-volume faces (cm2)
B constant (mV)
Ck species mass fraction
Dk species diffusivity (cm2 s−1)
Deff

k effective mass diffusivity (cm2 s−1)
ini input signal
j current density (A cm−2 or mA cm−2)
j0/CO2,ref constant in Tafel equation (A cm−2)
jmax maximum current density (mA cm−2)
Ji total flux in the i direction (g cm−2 s−1)
k permeability (cm2)
Km Michaelis–Menten constant (mM)
L cathode length (cm)
netj sum of the input weighted signal
R resistance (� cm2)
S substrate (peroxide) concentration (mM)
Sk species source term (g cm−3 s−1)
Su momentum source term (g cm−2 s−2)
t time (s)
tor tortuosity
u component of the velocity vector �u in the x direc-

tion (cm s−1)
�u velocity vector (cm s−1)
ui velocity in the i direction (cm s−1)
v component of the velocity vector �u in the y direc-

tion (cm s−1)
vmax maximum reaction rate (mol cm−3 s−1)
vMM reaction rate (mol cm−3 s−1)
V0 open circuit potential (V or mV)
wjb an off-set term
wji weighted connections
x x axis (cm)
xi ith axis (cm)
y y axis (cm)
yj unit output

Greek letters
α water transport coefficient
αC cathode transfer coefficient
Γ diffusion coefficient (g cm−1 s−1)
ε porosity
η overpotential (V or mV)
ηnet learning rate
µeff effective viscosity (g cm−1 s−1)
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ρ density (g cm )
φ dependent variable

Eqs. (1a)–(1c))) on a computational grid by using either
nite-difference, finite-volume or finite-element methodologies

3–5].

∂(ερ)

∂t
= −∇ · (ερ�u) (1a)

p

y
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∂(ερ�u)

∂t
= −∇ · (ερ�u�u) − ε∇P + ∇ · (εµeff∇�u) + Su (1b)

∂(ερCk)

∂t
= −∇ · (ε�uρCk) + ∇ · (Deff

k ρ∇Ck) + Sk (1c)

here

u= −µ

k
ε2�u (diffusion layer) and Sk ∝ −jc

nF
(catalyst layer)

.2. Kinetics of enzyme-catalyzed reactions

It has been observed, regarding the kinetics of many enzyme-
atalyzed reactions, that:

kinetics is first order when the substrate concentration, S, is
low;
when the substrate concentration is high, reaction order is
zero.

Those observations can be quantified through the
ichaelis–Menten kinetics:

MM = vmaxS

Km + S
(2)

Briggs and Haldane [6] have provided a derivation of Eq.
2) with a rigorous mathematical analysis (although Henri as
ell as Michaelis and Menten also have provided their own

heoretical explanations [6]). Regarding the kinetics associated
ith the reduction of peroxide by horseradish peroxidase (the
ost extensively studied peroxidase), a Michaelis–Menten-like

quation arises (as a function of H2O2 concentration) when
he concentration of reducing substrate is approximately con-
tant [7]. Regarding the integration of electrochemistry and
iotechnology, Bartlett et al. [8] fitted a Michaelis–Menten-
ype model (at a specific potential) for the current density (as a
unction of H2O2 concentration) associated with the horseradish
eroxidase-catalyzed decomposition of H2O2.

.3. Artificial neural networks (ANN’s)

Multi-Layer Perceptron (MLP, also called feedforward) is a
lass of ANN’s [9,10] extensively used. A MLP ANN consists
f interconnected layers (input, hidden and output) of process-
ng units (neurons). Neurons in adjacent layers are joined by
eighted connections (wji). Each unit sums (netj) the input
eighted signal (wjiini) and an off-set term (bias, wjb):

etj =
n∑

i=1

wjiini + wjb (3)

A non-linear function evaluates netj, producing the unit out-

ut (yj). In most cases:

j = 1

1 + exp(−netj)
(4)
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Fig. 1. Schematic diagram showing the components of a single polymer elec-
trolyte membrane bio fuel cell: (1) aluminum plate; (2) screw input; (3) heaters
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In the training process, the neural weights are adjusted, usu-
lly by using the “backpropagation algorithm” (in a back direc-
ion from output to input layer [11]). The change in weights is
ased on the gradient descent rule:

wji = −ηnet
∂(sum of squared errors)

∂wji

(5)

Regarding the empirical modeling of polymer electrolyte
embrane fuel cells Lee et al. [12] presented an ANN model

s a practical alternative to analytical and empirical models of
uel cells. Ou and Achenie [13], in turn, showed that an ANN
odel was capable of simulating some effects for which there

re currently no valid fundamental models available from the
pen literature.

. Materials and methods

Empirical and semi-empirical models are data-based ones.
herefore, some experiments were carried out to provide the
ecessary data for the modeling of the biochemical cells.

The enzyme source was a material properly extracted
according to [14]) from the Brazilian zucchini squash Cucurbita
epo. After washing and drying, the vegetal tissue was peeled,
omogenized in a liquefier (1 g of zucchini in 10 ml of water)
nd filtered. After the filtering, a proper quantity of active car-
on was added to the solution. It was centrifuged (at 2000 rpm)
nd the supernatant was separated, frozen in liquid nitrogen and
yophilized to dryness. That extract from Brazilian zucchini was
sed in different ways for preparing the cathodes.

The adsorption procedure of a protein is relatively simple and
xtensively used. The enzyme can also be immobilized on a solid
upport through low energy bonds, such as van der Waals forces,
ydrogen bridges and ionic bonds. Starting from the enzyme
ource, three kinds of electrodes were prepared. The enzyme
as adsorbed (referred below as cathode condition 3 for neural
etwork processing) and immobilized (referred below as cath-
de condition 2 for neural network processing) on a carbon tissue
PWB-3, Stackpole). Before depositing the enzyme, the carbon
issue was submitted to a treatment with nitric acid and properly
ashed with water purified in a milli-Q system. In the adsorption
rocedure, a piece of carbon tissue was immersed into the aque-
us solution containing the enzymatic extract at a concentration
f 15 mg ml−1, and properly lyophilized. For immobilization,
he dried tissue containing the adsorbed extract was immersed
nto a chloroform solution (Merck) containing 1 mM of dicyclo-
exylcarbodiimide (Aldrich) and properly dried in an airflow.
lectrodes with the enzyme adsorbed on active carbon powder
ere also prepared (referred below as cathode condition 1 for
eural network processing). In this case, the carbon powder was
dded to the enzyme extract for adsorption. An additional type of
lectrode can be prepared when the enzymes are immobilized by
mmersing the enzyme adsorbed on active carbon powder into a
hloroform solution (Merck) containing 1 mM of dicyclohexyl-

arbodiimide (Aldrich), but no experiments in a single cell were
erformed using this kind of electrode.

In the single cell experiments a Pt/C electrode, containing
.4 mg Pt cm−2, was used. The anode was prepared by distribut-

t
a
f

nput; (4) gas heaters (optional use); (5) graphite plate; (6) flow distributor; (7)
t guide; (8) membrane; (9) electrodes; (10) thermocouple.

ng the Pt catalyst on a carbon tissue containing carbon powder
nd Teflon® (Dupont).

.1. Pt–H2/H2O2-peroxidase biochemical fuel cell

Experiments in a single cell, with a (immobilized on a carbon
issue) Brazilian zucchini squash peroxidase cathode, were car-
ied out. A Nafion® 117 membrane was used as the electrolyte.
he Pt/C anode was hot pressed to the chosen membrane, and

hen the cathode was put into contact with it, since the enzymes
annot support high pressures.

Hydrogen was fed to the anode, while a 0.8 mM hydrogen
eroxide solution was supplied to the cathode. Atmospheric
ressure (1 atm) and room temperature (24 ◦C) were the work-
ng conditions. The cell voltage and the circulating current were

easured with multimeters. Fig. 1 shows a schematic diagram
f the cell (but gas heaters are not used for liquid feed).

.2. Pt–H2/O2-peroxidase biochemical fuel cell

Twelve experiments were carried with the Brazilian zuc-
hini squash peroxidase cathode in a single cell, using either
deposited enzyme on active carbon powder (named condition
, only to be distinguished from the other conditions), or immo-
ilized on a carbon tissue (named condition 2) or deposited on
carbon tissue (named condition 3). A Nafion® 117 membrane
as used as the electrolyte. The Pt/C anode was hot pressed to

he membrane, while the cathodes were put into contact with it.
Hydrogen was fed to the anode, while oxygen was supplied to
he cathode. Adequate pressure (1 atm) and temperatures (24 ◦C
nd 35 ◦C) were selected. The cell voltage was measured as a
unction of the current. Fig. 1, again, shows a scheme of the cell.
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Table 1
Values of the parameters used in the simulation of the Pt–air cathode

Water vapor diffusivity, DH2O (cm2 s−1) 0.32
Oxygen diffusivity, DO2 (cm2 s−1) 0.25
Inert diffusivity, Dinert (cm2 s−1) 0.25
Diffusion layer porosity, ε 0.3
Diffusion layer tortuosity, tor 1.1
Water transport coefficient, α 0.2
Constant in Tafel equation, j0/CO2,ref (A cm−2) 0.2 × 10−4

Cathode transfer coefficient, αC 1.2
Open circuit potential, V0 (V) 1.1
Channel height (cm) 0.075
Gas diffusion layer height (cm) 0.045
Cathode length, L (cm) 2
Water vapor mass fraction at the inlet, CH2O

∣∣
x=0

0.015

Oxygen mass fraction at the inlet, CO2

∣∣
x=0

0.23

Inert mass fraction at the inlet, Cinert|x=0 0.755
Air velocity at the inlet, u (cm s−1) 35
T
P

f
d
c
o

grid was performed by starting from the solver implemented
into the free-software MFIX [15]. Briefly, the essence of partial
differential equations solvers is the discretization of equations in
appropriate control volumes. For the integration of Eq. (6) over
Fig. 2. Scheme of a porous cathode of a PEMFC.

. Results and discussion

.1. Pt–air cathode

The mathematical model (within the CFD framework) of
Pt–air cathode (Fig. 2; Eq. (6)) developed here is based on

pecies mass fraction equations (oxygen, water vapor and inert
as), since one hypothesis was considered: negligible velocity
eld in the porous layer, where gas diffusion is the dominant

ransport mechanism, and fully developed plug-flow field in the
as channel.

∂(ερCk)

∂t
= −∇ · (ε�uρCk) + ∇ · (εtorρDk∇Ck) (6)

0 < y < channel height:

u|x=0 = uin, v|x=0 = 0,

CH2O|x=0 = 0.015, CO2 |x=0 = 0.23, Cinert|x=0 = 0.755

Channel height < y < total height:

u|x=0 = 0, v|x=0 = 0,(
∂(CH2O)

∂x

)∣∣∣∣
x=0

= 0,

(
∂(CO2 )

∂x

)∣∣∣∣
x=0

= 0,

(
∂(Cinert)

∂x

)

u|x=L = 0, v|x=L = 0,(
∂(CH2O)

∂x

)∣∣∣∣
x=L

= 0,

(
∂(CO2 )

∂x

)∣∣∣∣
x=L

= 0,

(
∂(Cinert)

∂x

0 < x < cell length:

u|y=0 = uin, v|y=0 = 0,(
∂(CH2O)

∂y

)∣∣∣∣ = 0,

(
∂(CO2 )

∂y

)∣∣∣∣ = 0,

(
∂(Cinert)

∂y

)

y=0 y=0 y=
0
= 0

L

= 0

in

emperature, T (◦C) 80 (353 K)
ressure, P (atm) 1

Membrane cathode interface (where the oxygen reduction reac-
tion takes place):

u|y=total height = 0, v|y=total height = 0,

−εtorDk

(
∂(ρCH2O)

∂y

)∣∣∣∣
y=total height

= −MH2O(1 + 2α)j

2F

−εtorDk

(
∂(ρCO2 )

∂y

)
y=total height

= MO2j

4F

j =
(

j0

CO2,ref

)
CO2 exp

(−αcFη

RT

)

Other considerations are: steady-state operation, Fick’s dif-
usion mechanism and Tafel kinetics, to describe the current
ensity along the membrane/cathode interface (as a boundary
ondition, instead of as a source term). Table 1 shows the values
f the parameters used in the simulation.

The solution of conservation equations on a computational
0
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Fig. 5. Oxygen mass fraction contours in a Pt–air cathode at 0.83 A cm−2 and
0.77 V.

F
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ig. 3. Oxygen mass fraction contours in a Pt–air cathode at 0.41 A cm−2 and
.81 V.

control volume, it is convenient to combine the convection and
iffusion fluxes:

i = ρuiφ − Γ
∂φ

∂xi

(7)

∂

∂t
(ρφ) + ∂Ji

∂xi

= 0 (8)

ρpφp − ρ0
pφ

0
p)

(
	Area

	t

)
+ JeAe − JwAw

+JnAn − JsAs = 0 (9)

here φ is the dependent variable Ck (k = H2O, O2, inert) and
= εtor−1ρDk.
For steady-state conditions, the first term in Eq. (9) vanishes.

ertain approximations to the total flux expression have been
resented [16,17]. If the fluxes in Eq. (9) are written in terms of
he proper expressions, a system of algebraic equations arises
hen all points in the grid are considered.

Figs. 3–8 show the results of the simulations of the Pt–air

athode. They show the mass fraction profiles of oxygen and
ater vapor (the mass fraction of inert gas is simply (1 −
H2O − CO2 )) in three different average current densities (and

ig. 4. Oxygen mass fraction contours in a Pt–air cathode at 0.69 A cm−2 and
.78 V.

i
0
s
w

F
0

ig. 6. Water mass fraction contours in a Pt–air cathode at 0.41 A cm−2 and
.81 V.

he associated potentials). It is possible to observe the oxygen
onsumption with the increase in current density as well as the

ncrease in water formation. In particular, at a current density of
.83 A cm−2 (cathode potential 0.77 V versus SHE), it is pos-
ible to observe the limit of one-phase regime (Fig. 8), i.e.,
hen the water vapor density at the membrane/cathode inter-

ig. 7. Water mass fraction contours in a Pt–air cathode at 0.69 A cm−2 and
.78 V.



188 R. Sousa Jr. et al. / Journal of Power Sources 161 (2006) 183–190

F
0

f
t

z

4

c
t
(
p
(

j

w

K

V

L
c
j

M
a
i
P
o

4

p
t
e

o
a

b
i
E
S
m

n
r
are very accurate.

Figs. 13–15, in turn, show experimental and neural poten-
tial/current relationships for the Pt–H2/O2-peroxidase fuel cells
(training data points, except where indicated as validation
ig. 8. Water mass fraction contours in a Pt–air cathode at 0.83 A cm−2 and
.77 V.

ace reaches the saturation value associated with the operating
emperature (corresponding to CH2O ≈ 0.3).

With a further increase in the current density, a two-phase
one will form, and a two-phase model will be necessary.

.2. Pt–H2/H2O2-peroxidase biochemical fuel cell

The semi-empirical model of a Pt–H2/H2O2-peroxidase fuel
ell developed here is based on a Michaelis–Menten-like equa-
ion for the current density (as a function of H2O2 concentration
S in Eq. (10)) associated with the peroxidase-catalyzed decom-
osition of H2O2 and using it to model the cell performance (Eq.
11)).

= jmaxS

Km + S
(10)

ith

m = A exp
( η

B

)

= V0 − Rj + B ln

[
S

A

(
jmax

j
− 1

)]
(11)

Fitted parameters by using experimental data, Eq. (11) and
evenberg–Marquardt algorithm [18] implemented into Micro-
al Origin® were (for V0 = 700 mV, S = 0.8 mM and considering
max = 1.5 mA cm−2): B = 123 mV, A = 45 mM.

Fig. 9 shows graphically the predictions of the
ichaelis–Menten-like equation for the current density as
function of the H2O2 concentration. Fig. 10 shows exper-

mental and model potential/current relationships for the
t–H2/H2O2-peroxidase fuel cell. A very good agreement is
bserved between experimental and model values.

.3. Pt–H2/O2-peroxidase biochemical fuel cell
The empirical neural network model of a Pt–H2/O2-
eroxidase fuel cell developed here maps three input variables—
emperature, current density and cathode conditions, i.e., with
nzymes deposited on active carbon powder (1), immobilized

F
T

Fig. 9. Current density vs. H2O2 concentration for a peroxidase cathode.

n a carbon tissue (2) or deposited on a carbon tissue (3), into
nd output space associated with the cell potential (Fig. 11).

Regarding the training process, neural weights were adjusted
y using the “backpropagation algorithm” implemented into an
n-house software (original version by CAO Nascimento, DEQ-
PUSP, modified by AJG Cruz, DEQ-UFSCar, modified by R.
ousa Jr., and used previously in the characterization of a neural
odel for whey protein hydrolysis [19]).
Fig. 12 shows the learning accuracy associated with the neural

etwork. The meaning of obtaining a neural versus experimental
elationship close to f(x) = x is that the neural network responses
ig. 10. Potential/current relationship for a Pt–H2/H2O2-peroxidase fuel cell.
= 24 ◦C, p(H2) = 1 atm, [H2O2] = 0.8 mM.
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Fig. 11. Schematic diagram of the artificial neural network.

Fig. 12. Accuracy test associated with the neural network.

Fig. 13. Experimental and neural potential/current relationships for a Pt–H2/O2-
peroxidase fuel cell. Cathode preparation conditions 1 and 2.

Fig. 14. Experimental and neural potential/current relationships for a Pt–H2/O2-
peroxidase fuel cell. Cathode preparation condition 1 and different temperatures.

Fig. 15. Experimental and neural potential/current relationships for a Pt–H2/O2-
peroxidase fuel cell. Cathode preparation conditions 2 and 3.

Fig. 16. Experimental and neural potential/current relationships for a Pt–H2/O2-
peroxidase fuel cell. Failure detection.
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oints). It is possible to observe a very good agreement between
xperimental and neural values. In Fig. 16, an additional fea-
ure of artificial neural networks is presented, failure detection:
nder the best conditions (experiments 1–3), the peroxidase
lectrode was pre-humidified; in experiments 8–10, however,
re-humidification was not performed and the performance is
ower than the neural prediction. This indicates a failure in the
xperimental procedure.

. Conclusions

The main conclusions of this work may be summarized as
ollows:

A mechanistic model was developed for a Pt–air cathode, which
can provide details of the physical system (such as the limit of
the one-phase regime).
A semi-empirical model based on Michaelis–Menten kinet-
ics is adequate to predict the performance of a Pt–H2/H2O2-
peroxidase biochemical fuel cell.
Artificial neural networks were capable of fitting the poten-
tial/current relationships of Pt–H2/O2-peroxidase biochemical
fuel cells.
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Hidrólise Enzimática de Soro de Queijo em Reator Contı́nuo, Ph.D. Dis-
sertation, Universidade Federal de São Carlos, Brazil, 2003.


	Modeling techniques applied to the study of gas diffusion electrodes and proton exchange membrane biochemical fuel cells
	Introduction
	Background
	Computational fluid dynamics
	Kinetics of enzyme-catalyzed reactions
	Artificial neural networks (ANNs)

	Materials and methods
	Pt-H2/H2O2-peroxidase biochemical fuel cell
	Pt-H2/O2-peroxidase biochemical fuel cell

	Results and discussion
	Pt-air cathode
	Pt-H2/H2O2-peroxidase biochemical fuel cell
	Pt-H2/O2-peroxidase biochemical fuel cell

	Conclusions
	Acknowledgements
	References


