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Abstract

Mathematical modeling has been extensively applied to the study and development of fuel cells. In this laboratory, modeling studies of gas
diffusion electrodes and proton exchange membrane biochemical fuel cells are being developed. Regarding the modeling of usual physical systems,
the available knowledge makes it possible to develop mechanistic models. For biochemical fuel cells, on the other hand, semi-empirical and empirical
models can be used. In this work, there are three objectives: characterize a phenomenological model for a Pt—air cathode and perform appropriate
simulations; characterize a semi-empirical model to predict the performance of a Pt—H,/H,O,-peroxidase fuel cell; investigate the effectiveness of
(empirical) neural networks to predict the performance of a Pt—H,/O,-peroxidase fuel cell. The mechanistic model of a Pt—air cathode developed
here is based on proper material balances, on Fick’s law of diffusion and on Tafel kinetics. It can provide details of the physical system (such as the
limit of the one-phase regime). A semi-empirical model based on Michaelis—Menten kinetics, in turn, can predict the performance of a Pt-H,/H,0,-
peroxidase biochemical fuel cell. Artificial neural networks were capable of fitting the potential/current relationship of a Pt—H,/O,-peroxidase

biochemical fuel cell.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Mathematical modeling has been extensively applied to the
study and development of fuel cells. Sousa and Gonzalez [1]
reviewed the state-of-the-art regarding modeling of fuel cells
with a polymer electrolyte membrane.

The optimal modeling approach differs for each applica-
tion [1,2]. Empirical models, specific for each application and
set of operating conditions, are useful tools to predict the cell
performance. Mechanistic models, in turn, besides their pre-
dictive capability, also can provide a detailed description of
the cell and its components. A mechanistic fuel cell model is
based on transport phenomena and electrochemical relation-
ships.

In this laboratory, modeling studies of gas diffusion elec-
trodes and proton exchange membrane biochemical fuel cells
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are being developed. Regarding the modeling of usual physical
systems, the available knowledge makes it possible to develop
mechanistic models. For biochemical fuel cells, on the other
hand, to which less phenomenological knowledge is available,
empirical (and semi-empirical) models can be used. This work
has three objectives: characterize a phenomenological model for
a Pt—air cathode and perform appropriate simulations; charac-
terize a semi-empirical model to predict the performance of a
Pt-H,/H,Os-peroxidase fuel cell; investigate the effectiveness
of (empirical) neural networks to predict the performance of a
Pt—H»/O;-peroxidase fuel cell.

2. Background
2.1. Computational fluid dynamics

Over the past decade or so, computational fluid dynam-
ics (CFD) techniques have been used extensively to model
fuel cells. CFD is based on the solution of phenomenolog-
ical conservation equations (mass, momentum, species, ...
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Nomenclature

A constant (mM)

A; areas of control-volume faces (cm?)

B constant (mV)

Cy species mass fraction

Dy species diffusivity (cm?s~1)

szf effective mass diffusivity (cm?s~h)

in; input signal

j current density (A cm~2 or mA cm_Z)

Jo/Co,.ret constant in Tafel equation (A cm_z)

Jmax maximum current density (mA cm™2)

J;i total flux in the i direction (g cm~ 257

k permeability (cm?)

Kn Michaelis—Menten constant (mM)

L cathode length (cm)

net; sum of the input weighted signal

R resistance (2 cm?)

S substrate (peroxide) concentration (mM)

Sk species source term (g cm 357

Sy momentum source term (g cm—2 s_2)

t time (s)

tor tortuosity

u component of the velocity vector # in the x direc-
tion (cms™!)

u velocity vector (cm s7h

U; velocity in the i direction (cms™1)

v component of the velocity vector # in the y direc-

tion (cms™!)
Vmax maximum reaction rate (molcm 3 s™1)
UMM reaction rate (mol cm =3 s~1)

Vo open circuit potential (V or mV)
Wb an off-set term

wji weighted connections

X X axis (cm)

X; ith axis (cm)

y y axis (cm)

Vi unit output

Greek letters

o water transport coefficient

oc cathode transfer coefficient

r diffusion coefficient (gcm™! s~ 1)
€ porosity

n overpotential (V or mV)

Nnet learning rate

wett effective viscosity (g cm~ s
0 density (gcm™3)

¢ dependent variable

(Egs. (la)—(1c))) on a computational grid by using either
finite-difference, finite-volume or finite-element methodologies
[3-5].

d(ep)
ot

— V- (epi) (1a)

Nepii . B}

(88’;“) — _V - (epiill) —eVP + V- (epTVI)+ S, (Ib)
d(epC -
% =~V (eiipCi) + V - (D§TpV Cp) + S (1c)
where

Sy= —%8217 (diffusion layer) and S; « 1FC (catalyst layer)
n

2.2. Kinetics of enzyme-catalyzed reactions

It has been observed, regarding the kinetics of many enzyme-
catalyzed reactions, that:

e Kkinetics is first order when the substrate concentration, S, is
low;

e when the substrate concentration is high, reaction order is
Z€ero.

Those observations can be quantified
Michaelis—Menten kinetics:

through the

Umax S
Kn+S

VMM = (2)
Briggs and Haldane [6] have provided a derivation of Eq.
(2) with a rigorous mathematical analysis (although Henri as
well as Michaelis and Menten also have provided their own
theoretical explanations [6]). Regarding the kinetics associated
with the reduction of peroxide by horseradish peroxidase (the
most extensively studied peroxidase), a Michaelis—Menten-like
equation arises (as a function of H>O; concentration) when
the concentration of reducing substrate is approximately con-
stant [7]. Regarding the integration of electrochemistry and
biotechnology, Bartlett et al. [8] fitted a Michaelis—Menten-
type model (at a specific potential) for the current density (as a
function of HyO; concentration) associated with the horseradish
peroxidase-catalyzed decomposition of H>O».

2.3. Artificial neural networks (ANN's)

Multi-Layer Perceptron (MLP, also called feedforward) is a
class of ANN’s [9,10] extensively used. A MLP ANN consists
of interconnected layers (input, hidden and output) of process-
ing units (neurons). Neurons in adjacent layers are joined by
weighted connections (wj;). Each unit sums (net;) the input
weighted signal (w jiin;) and an off-set term (bias, w jp):

n
net; = ijiini + wijb 3)
i=1
A non-linear function evaluates net;, producing the unit out-
put (y;). In most cases:

1

- 1 + exp(—net;) “@

Yj



R. Sousa Jr. et al. / Journal of Power Sources 161 (2006) 183—190 185

In the training process, the neural weights are adjusted, usu-
ally by using the “backpropagation algorithm” (in a back direc-
tion from output to input layer [11]). The change in weights is
based on the gradient descent rule:

d(sum of squared errors)
Awji = —Mnet )
awﬁ

Regarding the empirical modeling of polymer electrolyte
membrane fuel cells Lee et al. [12] presented an ANN model
as a practical alternative to analytical and empirical models of
fuel cells. Ou and Achenie [13], in turn, showed that an ANN
model was capable of simulating some effects for which there
are currently no valid fundamental models available from the
open literature.

3. Materials and methods

Empirical and semi-empirical models are data-based ones.
Therefore, some experiments were carried out to provide the
necessary data for the modeling of the biochemical cells.

The enzyme source was a material properly extracted
(according to [14]) from the Brazilian zucchini squash Cucurbita
pepo. After washing and drying, the vegetal tissue was peeled,
homogenized in a liquefier (1 g of zucchini in 10 ml of water)
and filtered. After the filtering, a proper quantity of active car-
bon was added to the solution. It was centrifuged (at 2000 rpm)
and the supernatant was separated, frozen in liquid nitrogen and
lyophilized to dryness. That extract from Brazilian zucchini was
used in different ways for preparing the cathodes.

The adsorption procedure of a protein is relatively simple and
extensively used. The enzyme can also be immobilized on a solid
support through low energy bonds, such as van der Waals forces,
hydrogen bridges and ionic bonds. Starting from the enzyme
source, three kinds of electrodes were prepared. The enzyme
was adsorbed (referred below as cathode condition 3 for neural
network processing) and immobilized (referred below as cath-
ode condition 2 for neural network processing) on a carbon tissue
(PWB-3, Stackpole). Before depositing the enzyme, the carbon
tissue was submitted to a treatment with nitric acid and properly
washed with water purified in a milli-Q system. In the adsorption
procedure, a piece of carbon tissue was immersed into the aque-
ous solution containing the enzymatic extract at a concentration
of 15mgml~!, and properly lyophilized. For immobilization,
the dried tissue containing the adsorbed extract was immersed
into a chloroform solution (Merck) containing 1 mM of dicyclo-
hexylcarbodiimide (Aldrich) and properly dried in an airflow.
Electrodes with the enzyme adsorbed on active carbon powder
were also prepared (referred below as cathode condition 1 for
neural network processing). In this case, the carbon powder was
added to the enzyme extract for adsorption. An additional type of
electrode can be prepared when the enzymes are immobilized by
immersing the enzyme adsorbed on active carbon powder into a
chloroform solution (Merck) containing 1 mM of dicyclohexyl-
carbodiimide (Aldrich), but no experiments in a single cell were
performed using this kind of electrode.

In the single cell experiments a Pt/C electrode, containing
0.4 mg Ptcm™2, was used. The anode was prepared by distribut-

Fig. 1. Schematic diagram showing the components of a single polymer elec-
trolyte membrane bio fuel cell: (1) aluminum plate; (2) screw input; (3) heaters
input; (4) gas heaters (optional use); (5) graphite plate; (6) flow distributor; (7)
fit guide; (8) membrane; (9) electrodes; (10) thermocouple.

ing the Pt catalyst on a carbon tissue containing carbon powder
and Teflon® (Dupont).

3.1. Pt-H»/H>0;-peroxidase biochemical fuel cell

Experiments in a single cell, with a (immobilized on a carbon
tissue) Brazilian zucchini squash peroxidase cathode, were car-
ried out. A Nafion® 117 membrane was used as the electrolyte.
The Pt/C anode was hot pressed to the chosen membrane, and
then the cathode was put into contact with it, since the enzymes
cannot support high pressures.

Hydrogen was fed to the anode, while a 0.8 mM hydrogen
peroxide solution was supplied to the cathode. Atmospheric
pressure (1 atm) and room temperature (24 °C) were the work-
ing conditions. The cell voltage and the circulating current were
measured with multimeters. Fig. 1 shows a schematic diagram
of the cell (but gas heaters are not used for liquid feed).

3.2. Pt—-H»/Os-peroxidase biochemical fuel cell

Twelve experiments were carried with the Brazilian zuc-
chini squash peroxidase cathode in a single cell, using either
a deposited enzyme on active carbon powder (named condition
1, only to be distinguished from the other conditions), or immo-
bilized on a carbon tissue (named condition 2) or deposited on
a carbon tissue (named condition 3). A Nafion® 117 membrane
was used as the electrolyte. The Pt/C anode was hot pressed to
the membrane, while the cathodes were put into contact with it.

Hydrogen was fed to the anode, while oxygen was supplied to
the cathode. Adequate pressure (1 atm) and temperatures (24 °C
and 35 °C) were selected. The cell voltage was measured as a
function of the current. Fig. 1, again, shows a scheme of the cell.
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Fig. 2. Scheme of a porous cathode of a PEMFC.

4. Results and discussion
4.1. Pt—air cathode

The mathematical model (within the CFD framework) of
a Pt—air cathode (Fig. 2; Eq. (6)) developed here is based on
species mass fraction equations (oxygen, water vapor and inert
gas), since one hypothesis was considered: negligible velocity
field in the porous layer, where gas diffusion is the dominant
transport mechanism, and fully developed plug-flow field in the
gas channel.

d(epC -
% = =V - (eiipCr) + V - (¢ pDkV Cy) (6)
0 <y<channel height:

U|x:() = Os
Co,lx=0 = 0.23,

U|y=0 = Uin,

CH,0lx=0 = 0.015, Cinertlx=0 = 0.755

Channel height < y < total height:

u|X=0 = Or U|x=0 = 07
1Cmo) | _,  (¥Co)\| _,  (¥Cinen)
ox 0 x )l ox
Ulx=r, =0, v|x= =0,
1Cmo\|  _o  (#Co\| _,  (Ciew
ox L ox )l ox
0 <x<cell length:
”|y=0 = Uin, U|y=()=Oa
(3(CH20)> _0 (3(C02)> —0 <3(Cinen))
8y y=0 ' ay y=0 ’ 8_)7
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Table 1

Values of the parameters used in the simulation of the Pt—air cathode

Water vapor diffusivity, Dy,0 (em?s™h) 0.32
Oxygen diffusivity, Do, (cm?s™1) 0.25

Inert diffusivity, Dipere (cm? s~ 1) 0.25
Diffusion layer porosity, & 0.3
Diffusion layer tortuosity, tor 1.1

Water transport coefficient, o 0.2
Constant in Tafel equation, jo/Co, ref (A cm~2) 02x10~*
Cathode transfer coefficient, ac 1.2

Open circuit potential, Vo (V) 1.1
Channel height (cm) 0.075

Gas diffusion layer height (cm) 0.045
Cathode length, L (cm) 2

Water vapor mass fraction at the inlet, C,0 |x=0 0.015
Oxygen mass fraction at the inlet, Co, ’x:() 0.23

Inert mass fraction at the inlet, Cinert|x=0 0.755

Air velocity at the inlet, u;, (cm s7h) 35
Temperature, T (°C) 80 (353 K)
Pressure, P (atm) 1

Membrane cathode interface (where the oxygen reduction reac-
tion takes place):

u|y:total height = 0, U|y:total height = 0,
_gworpy (XPC0) _ “Mino(l +2)j
dy 2F

y=total height
_ M (0} .]
4F

_8IOFDk ( 8('O(jOZ) )
ay y=total height

NEnm—Ey
COg,ref ’ RT

Other considerations are: steady-state operation, Fick’s dif-
fusion mechanism and Tafel kinetics, to describe the current
density along the membrane/cathode interface (as a boundary
condition, instead of as a source term). Table 1 shows the values
of the parameters used in the simulation.

=0

x=0

=0
x=L

The solution of conservation equations on a computational
grid was performed by starting from the solver implemented
into the free-software MFIX [15]. Briefly, the essence of partial
differential equations solvers is the discretization of equations in
appropriate control volumes. For the integration of Eq. (6) over

=0

y=0
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Fig. 3. Oxygen mass fraction contours in a Pt—air cathode at 0.41 Acm~2 and
0.81V.

a control volume, it is convenient to combine the convection and
diffusion fluxes:

9
Ji= puig—I'3” ™)
Xi
aJ;
—( pP) + —’ =0 (®)
0,0, [ AArea
(pp¢p - pp¢p) At + JeAe - JWAW
+Jh Ay — JAs =0 )]

where ¢ is the dependent variable C (k=H;0, O, inert) and
= é‘tor_lpDk.

For steady-state conditions, the first term in Eq. (9) vanishes.
Certain approximations to the total flux expression have been
presented [16,17]. If the fluxes in Eq. (9) are written in terms of
the proper expressions, a system of algebraic equations arises
when all points in the grid are considered.

Figs. 3-8 show the results of the simulations of the Pt—air
cathode. They show the mass fraction profiles of oxygen and
water vapor (the mass fraction of inert gas is simply (1 —
Cu,0 — Co,)) in three different average current densities (and
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Fig. 4. Oxygen mass fraction contours in a Pt—air cathode at 0.69 A cm~2 and
0.78 V.
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Fig. 6. Water mass fraction contours in a Pt—air cathode at 0.41 Acm~2 and
0.81V.

the associated potentials). It is possible to observe the oxygen
consumption with the increase in current density as well as the
increase in water formation. In particular, at a current density of
0.83 Acm ™2 (cathode potential 0.77 V versus SHE), it is pos-
sible to observe the limit of one-phase regime (Fig. 8), i.e.,
when the water vapor density at the membrane/cathode inter-
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Fig. 7. Water mass fraction contours in a Pt—air cathode at 0.69 A cm~2 and
0.78 V.
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Fig. 8. Water mass fraction contours in a Pt-air cathode at 0.83 Acm~2 and
0.77 V.

face reaches the saturation value associated with the operating
temperature (corresponding to Cy,o ~ 0.3).

With a further increase in the current density, a two-phase
zone will form, and a two-phase model will be necessary.

4.2. Pt—Hy/H>0>-peroxidase biochemical fuel cell

The semi-empirical model of a Pt—-H»>/H,O;-peroxidase fuel
cell developed here is based on a Michaelis—Menten-like equa-
tion for the current density (as a function of H,O; concentration
(S'in Eq. (10)) associated with the peroxidase-catalyzed decom-
position of HO» and using it to model the cell performance (Eq.

(1.

jmaxS

_ 10

T =k +5 (10)

with

Ky = A ex (ﬁ)

m P B
¢/

V:VO—Rj—i—Bln[ (’m,a"—l)] (11)
AN\

Fitted parameters by using experimental data, Eq. (11) and
Levenberg—Marquardt algorithm [18] implemented into Micro-
cal Origin® were (for Vo =700mV, §=0.8 mM and considering
jmax=1.5mAcm™2): B=123mV, A=45mM.

Fig. 9 shows graphically the predictions of the
Michaelis—Menten-like equation for the current density as
a function of the H,O; concentration. Fig. 10 shows exper-
imental and model potential/current relationships for the
Pt-H,/H,O,-peroxidase fuel cell. A very good agreement is
observed between experimental and model values.

4.3. Pt—H»/O;3-peroxidase biochemical fuel cell

The empirical neural network model of a Pt—H»/O;-
peroxidase fuel cell developed here maps three input variables—
temperature, current density and cathode conditions, i.e., with
enzymes deposited on active carbon powder (1), immobilized

overpotential
1.2+ ——— 600 mV
11 —-450 mV
T e 2300 mV
1.0+ =150 mV
0.9
e 08
(5]
< 0.7 1
£
> 06+
S 0.5
= ]
= 0.4+
9 4
= 0.3
(&) 4
0.2
014
0.0 T T T Y T T T Y T
0.2 0.4 0.6 0.8 1.0
[H,0,]mM

Fig. 9. Current density vs. HyO» concentration for a peroxidase cathode.

on a carbon tissue (2) or deposited on a carbon tissue (3), into
and output space associated with the cell potential (Fig. 11).

Regarding the training process, neural weights were adjusted
by using the “backpropagation algorithm” implemented into an
in-house software (original version by CAO Nascimento, DEQ-
EPUSP, modified by AJG Cruz, DEQ-UFSCar, modified by R.
Sousa Jr., and used previously in the characterization of a neural
model for whey protein hydrolysis [19]).

Fig. 12 shows the learning accuracy associated with the neural
network. The meaning of obtaining a neural versus experimental
relationship close to f{x) = x is that the neural network responses
are very accurate.

Figs. 13—15, in turn, show experimental and neural poten-
tial/current relationships for the Pt—H»/O,-peroxidase fuel cells
(training data points, except where indicated as validation

700+

600

m  experimental

500 with a Michaelis-Menten model

4004

300

potential (mV)

200+

100

04

L T T T
0.0 0.2 0.4 0.6 0.8 1.0
current density (mA cm™)

Fig. 10. Potential/current relationship for a Pt—H,/H, O -peroxidase fuel cell.
T=24°C, p(Hy)=1atm, [HyO02]=0.8 mM.
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Fig. 11. Schematic diagram of the artificial neural network.
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Fig. 13. Experimental and neural potential/current relationships for a Pt-H,/O,-
peroxidase fuel cell. Cathode preparation conditions 1 and 2.
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Fig. 14. Experimental and neural potential/current relationships for a Pt—-H/O5-
peroxidase fuel cell. Cathode preparation condition 1 and different temperatures.
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Fig. 15. Experimental and neural potential/current relationships for a Pt—H/O5-
peroxidase fuel cell. Cathode preparation conditions 2 and 3.
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points). It is possible to observe a very good agreement between
experimental and neural values. In Fig. 16, an additional fea-
ture of artificial neural networks is presented, failure detection:
under the best conditions (experiments 1-3), the peroxidase
electrode was pre-humidified; in experiments 8—10, however,
pre-humidification was not performed and the performance is
lower than the neural prediction. This indicates a failure in the
experimental procedure.

5. Conclusions

The main conclusions of this work may be summarized as
follows:

A mechanistic model was developed for a Pt—air cathode, which
can provide details of the physical system (such as the limit of
the one-phase regime).

A semi-empirical model based on Michaelis—Menten kinet-
ics is adequate to predict the performance of a Pt—-H»/H>O»-
peroxidase biochemical fuel cell.

Artificial neural networks were capable of fitting the poten-
tial/current relationships of Pt—H»/O;-peroxidase biochemical
fuel cells.
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